voxel-engine/src/main.cpp
2025-11-24 14:29:42 -06:00

560 lines
21 KiB
C++

#include <iostream>
#include <glad/glad.h> // Must be included before GLFW
#include <GLFW/glfw3.h>
#include <glm/glm.hpp>
#include "Shader.h"
#include "Player.h"
#include "Camera.h"
#include "Object3D.h"
#include "World.h"
// Window dimensions
unsigned int SCR_WIDTH = 1920;
unsigned int SCR_HEIGHT = 1080;
const int EDIT_RANGE = 5;
// Jump
const float JUMP_COOLDOWN = 0.0f;
const float JUMP_POWER = 7.5f; // Initial Jump Speed
float last_jump = 0.0f;
// Camera
const float CAMERA_SPEED = 1.0f;
const float MAX_CAMERA_SPEED = 2.0f;
const float LOOK_SENSITIVITY = 0.1f;
const float Z_FAR = 1000.0f;
const float Z_NEAR = 0.1f;
bool WIREFRAME_MODE = !true;
const float FOV = 110.0f;
const std::string VERSION = "0.9.0";
const int VIEW_DISTANCE = 4;
bool W_pressed, S_pressed, A_pressed, D_pressed = false;
glm::mat4 projection = glm::mat4(1.0f);
Player player = Player(CAMERA_SPEED, glm::vec3(0.0f, 20.0f, 0.0f));
Camera camera = Camera(&player);
// Targeted block for highlighting
std::optional<glm::ivec3> targeted_block = std::nullopt;
// Callback function for when the window is resized
// glfw: whenever the window size changed (by OS or user resize) this callback function executes
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
// make sure the viewport matches the new window dimensions; note that width and
// height will be significantly larger than specified on retina displays.
glViewport(0, 0, width, height);
SCR_WIDTH = width;
SCR_HEIGHT = height;
// Perspective needs to be recalculated on window size change
projection = glm::perspective(glm::radians(FOV), (float)SCR_WIDTH / (float)SCR_HEIGHT, Z_NEAR, Z_FAR);
}
float yaw, pitch = 0;
bool first_mouse = true;
bool mouse_lock = true;
float last_x = 400, last_y = 300;
World world;
// Mouse Look
void mouse_callback(GLFWwindow * window, double xpos, double ypos)
{
float x_offset = xpos - last_x;
float y_offset = last_y - ypos; // Inverted Y for typical FPS controls
last_x = xpos;
last_y = ypos;
if (first_mouse)
{
first_mouse = false;
return;
}
x_offset *= LOOK_SENSITIVITY;
y_offset *= LOOK_SENSITIVITY;
yaw += x_offset;
pitch += y_offset;
if (pitch > 89.0f)
pitch = 89.0f;
if (pitch < -89.0f)
pitch = -89.0f;
glm::vec3 direction;
direction.x = cos(glm::radians(yaw)) * cos(glm::radians(pitch));
direction.y = sin(glm::radians(pitch)); // Positive Y is up
direction.z = sin(glm::radians(yaw)) * cos(glm::radians(pitch));
camera.target = glm::normalize(direction);
}
// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
void processInput(GLFWwindow *window)
{
float current_time = glfwGetTime();
if (glfwGetKey(window, GLFW_KEY_P) == GLFW_PRESS) {
glm::vec3 eye = camera.getEyePosition();
glm::mat4 view = camera.getView();
glm::vec3 forward = -glm::vec3(view[0][2], view[1][2], view[2][2]); // Extract forward from view matrix
std::cout << "Camera target (from pitch/yaw): (" << camera.target.x << ", " << camera.target.y << ", " << camera.target.z << ")" << std::endl;
std::cout << "Camera forward (from view matrix): (" << forward.x << ", " << forward.y << ", " << forward.z << ")" << std::endl;
std::cout << "Match: " << (glm::length(camera.target - forward) < 0.01f ? "YES" : "NO") << std::endl;
}
// Update targeted block every frame for highlight
std::optional<std::pair<glm::ivec3, glm::ivec3>> raycast_result =
world.raycast_voxel(camera.getEyePosition(), camera.target, EDIT_RANGE);
if (raycast_result.has_value()) {
targeted_block = raycast_result.value().first;
// Debug: print occasionally
static int frame_count = 0;
if (frame_count % 60 == 0) {
std::cout << "Camera eye: (" << camera.getEyePosition().x << ", " << camera.getEyePosition().y << ", " << camera.getEyePosition().z << ")" << std::endl;
std::cout << "Camera target dir: (" << camera.target.x << ", " << camera.target.y << ", " << camera.target.z << ")" << std::endl;
std::cout << "Highlighted block: (" << targeted_block.value().x << ", " << targeted_block.value().y << ", " << targeted_block.value().z << ")" << std::endl;
}
frame_count++;
} else {
targeted_block = std::nullopt;
}
if(glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS) {
// if (mouse_lock) {
// glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_NORMAL);
// mouse_lock = false;
// } else {
// glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
// mouse_lock = true;
// }
glfwSetWindowShouldClose(window, true);
}
// ---- Movement ----
// Forward / Backward
if(glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
{
player.forward_velocity = player.speed * glm::vec3(camera.target.x, 0.0f, camera.target.z);
W_pressed = true;
}
if(glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
{
player.forward_velocity = -player.speed * glm::vec3(camera.target.x, 0.0f, camera.target.z);
S_pressed = true;
}
if(glfwGetKey(window, GLFW_KEY_S) == GLFW_RELEASE && S_pressed)
{
player.forward_velocity = glm::vec3(0.0f);
S_pressed = false;
}
if(glfwGetKey(window, GLFW_KEY_W) == GLFW_RELEASE && W_pressed)
{
player.forward_velocity = glm::vec3(0.0f);
W_pressed = false;
}
// Horizontal
if(glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
{
player.horizontal_velocity = -glm::normalize(glm::cross(glm::vec3(camera.target.x, 0.0f, camera.target.z), camera.worldUp)) * player.speed;
A_pressed = true;
}
if(glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
{
player.horizontal_velocity = glm::normalize(glm::cross(glm::vec3(camera.target.x, 0.0f, camera.target.z), camera.worldUp)) * player.speed;
D_pressed = true;
}
if(glfwGetKey(window, GLFW_KEY_A) == GLFW_RELEASE && A_pressed)
{
player.horizontal_velocity = glm::vec3(0.0f);
A_pressed = false;
}
if(glfwGetKey(window, GLFW_KEY_D) == GLFW_RELEASE && D_pressed)
{
player.horizontal_velocity = glm::vec3(0.0f);
D_pressed = false;
}
// Jump
if(glfwGetKey(window, GLFW_KEY_SPACE) == GLFW_PRESS)
// player.velocity -= glm::normalize(glm::cross(camera.target, glm::normalize(glm::cross(camera.target, camera.worldUp)))) * player.speed * 0.5f;
{
if (current_time - last_jump > JUMP_COOLDOWN && player.grounded)
{
player.vertical_velocity.y = JUMP_POWER;
last_jump = current_time;
}
}
// Sprint
if(glfwGetKey(window, GLFW_KEY_LEFT_SHIFT) == GLFW_PRESS)
player.speed = CAMERA_SPEED * 7.5;
if(glfwGetKey(window, GLFW_KEY_LEFT_SHIFT) == GLFW_RELEASE)
player.speed = CAMERA_SPEED * 20;
static bool left_mouse_pressed = false;
static bool right_mouse_pressed = false;
// Left click - place block
if (glfwGetMouseButton(window, GLFW_MOUSE_BUTTON_LEFT) == GLFW_PRESS && !left_mouse_pressed) {
left_mouse_pressed = true;
std::cout << "\n=== LEFT CLICK (PLACE) ===" << std::endl;
std::cout << "Camera eye pos: (" << camera.getEyePosition().x << ", " << camera.getEyePosition().y << ", " << camera.getEyePosition().z << ")" << std::endl;
std::cout << "Camera target: (" << camera.target.x << ", " << camera.target.y << ", " << camera.target.z << ")" << std::endl;
std::optional<std::pair<glm::ivec3, glm::ivec3>> raycast_result =
world.raycast_voxel(camera.getEyePosition(), camera.target, EDIT_RANGE);
if (raycast_result.has_value()) {
auto [target_block, normal] = raycast_result.value();
std::cout << "Hit block at: (" << target_block.x << ", " << target_block.y << ", " << target_block.z << ")" << std::endl;
std::cout << "Normal: (" << normal.x << ", " << normal.y << ", " << normal.z << ")" << std::endl;
glm::ivec3 place_pos = target_block + normal;
std::cout << "Placing at: (" << place_pos.x << ", " << place_pos.y << ", " << place_pos.z << ")" << std::endl;
world.set_voxel(place_pos, VoxelKind::Stone);
} else {
std::cout << "No block hit within range" << std::endl;
}
}
if (glfwGetMouseButton(window, GLFW_MOUSE_BUTTON_LEFT) == GLFW_RELEASE) {
left_mouse_pressed = false;
}
// Right click - remove block
if (glfwGetMouseButton(window, GLFW_MOUSE_BUTTON_RIGHT) == GLFW_PRESS && !right_mouse_pressed) {
right_mouse_pressed = true;
std::cout << "\n=== RIGHT CLICK (REMOVE) ===" << std::endl;
std::cout << "Camera eye pos: (" << camera.getEyePosition().x << ", " << camera.getEyePosition().y << ", " << camera.getEyePosition().z << ")" << std::endl;
std::cout << "Camera target: (" << camera.target.x << ", " << camera.target.y << ", " << camera.target.z << ")" << std::endl;
std::optional<std::pair<glm::ivec3, glm::ivec3>> raycast_result =
world.raycast_voxel(camera.getEyePosition(), camera.target, EDIT_RANGE);
if (raycast_result.has_value()) {
auto [target_block, normal] = raycast_result.value();
std::cout << "Hit block at: (" << target_block.x << ", " << target_block.y << ", " << target_block.z << ")" << std::endl;
std::cout << "Removing block at: (" << target_block.x << ", " << target_block.y << ", " << target_block.z << ")" << std::endl;
world.set_voxel(target_block, VoxelKind::Air);
} else {
std::cout << "No block hit within range" << std::endl;
}
}
if (glfwGetMouseButton(window, GLFW_MOUSE_BUTTON_RIGHT) == GLFW_RELEASE) {
right_mouse_pressed = false;
}
}
int main() {
// 1. --- Initialize GLFW ---
if (!glfwInit()) {
std::cerr << "Failed to initialize GLFW" << std::endl;
return -1;
}
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
// 2. --- Create a Window ---
GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, ("Voxel Engine " + VERSION).c_str(), NULL, NULL);
if (window == NULL) {
std::cerr << "Failed to create GLFW window" << std::endl;
glfwTerminate();
return -1;
}
glfwMakeContextCurrent(window);
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
// 3. --- Initialize GLAD ---
if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)) {
std::cerr << "Failed to initialize GLAD" << std::endl;
return -1;
}
glViewport(0, 0, SCR_WIDTH, SCR_HEIGHT);
// 4. Shader Setup
Shader shader("shaders/cube_vert.glsl", "shaders/cube_frag.glsl");
// 5. --- Set up Vertex Data and Buffers ---
// Load Cube OBJ
// Object3D cube = Object3D("objs/cube.obj");
// std::cout << "World created with " << world.chunks.size() << " chunks" << std::endl;
// Mesh generation now happens automatically when first rendering
if (WIREFRAME_MODE)
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
// Setup mouse look
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
glfwSetCursorPosCallback(window, mouse_callback);
// Setup projection matrix
projection = glm::perspective(glm::radians(FOV), (float)SCR_WIDTH / (float)SCR_HEIGHT, Z_NEAR, Z_FAR); // This doesn't need to be recalculated every frame
// Setup crosshair
unsigned int crosshairVAO, crosshairVBO;
glGenVertexArrays(1, &crosshairVAO);
glGenBuffers(1, &crosshairVBO);
glBindVertexArray(crosshairVAO);
glBindBuffer(GL_ARRAY_BUFFER, crosshairVBO);
// Crosshair vertices in NDC (Normalized Device Coordinates: -1 to 1)
float crosshairSize = 0.02f; // Size in NDC
float crosshairVertices[] = {
// Horizontal line
-crosshairSize, 0.0f, 0.0f,
crosshairSize, 0.0f, 0.0f,
// Vertical line
0.0f, -crosshairSize, 0.0f,
0.0f, crosshairSize, 0.0f
};
glBufferData(GL_ARRAY_BUFFER, sizeof(crosshairVertices), crosshairVertices, GL_STATIC_DRAW);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);
glEnableVertexAttribArray(0);
glBindVertexArray(0);
// Setup highlight box (cube outline)
unsigned int highlightVAO, highlightVBO, highlightEBO;
glGenVertexArrays(1, &highlightVAO);
glGenBuffers(1, &highlightVBO);
glGenBuffers(1, &highlightEBO);
glBindVertexArray(highlightVAO);
glBindBuffer(GL_ARRAY_BUFFER, highlightVBO);
// Cube outline vertices (slightly larger than 1 unit cube for visibility)
float offset = 0.001f; // Slight offset to prevent z-fighting
float highlightVertices[] = {
// 8 corners of a cube
-0.5f - offset, -0.5f - offset, -0.5f - offset, // 0
0.5f + offset, -0.5f - offset, -0.5f - offset, // 1
0.5f + offset, 0.5f + offset, -0.5f - offset, // 2
-0.5f - offset, 0.5f + offset, -0.5f - offset, // 3
-0.5f - offset, -0.5f - offset, 0.5f + offset, // 4
0.5f + offset, -0.5f - offset, 0.5f + offset, // 5
0.5f + offset, 0.5f + offset, 0.5f + offset, // 6
-0.5f - offset, 0.5f + offset, 0.5f + offset // 7
};
// Indices for the 12 edges of the cube
unsigned int highlightIndices[] = {
// Bottom face
0, 1, 1, 2, 2, 3, 3, 0,
// Top face
4, 5, 5, 6, 6, 7, 7, 4,
// Vertical edges
0, 4, 1, 5, 2, 6, 3, 7
};
glBufferData(GL_ARRAY_BUFFER, sizeof(highlightVertices), highlightVertices, GL_STATIC_DRAW);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);
glEnableVertexAttribArray(0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, highlightEBO);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(highlightIndices), highlightIndices, GL_STATIC_DRAW);
glBindVertexArray(0);
// Setup debug ray
unsigned int debugRayVAO, debugRayVBO;
glGenVertexArrays(1, &debugRayVAO);
glGenBuffers(1, &debugRayVBO);
glBindVertexArray(debugRayVAO);
glBindBuffer(GL_ARRAY_BUFFER, debugRayVBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 6, nullptr, GL_DYNAMIC_DRAW); // 2 points * 3 coords
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);
glEnableVertexAttribArray(0);
glBindVertexArray(0);
glm::mat4 view;
double start_time = glfwGetTime();
double move_time = glfwGetTime();
glEnable(GL_DEPTH_TEST);
bool debug_printed = false;
// FPS counter variables
double last_fps_update = glfwGetTime();
int frame_count = 0;
double fps = 0.0;
// 6. --- The Render Loop ---
while (!glfwWindowShouldClose(window)) {
// Update FPS counter
double current_time = glfwGetTime();
frame_count++;
if (current_time - last_fps_update >= 1.0) {
fps = frame_count / (current_time - last_fps_update);
std::string title = "Voxel Engine " + VERSION + " | FPS: " + std::to_string((int)fps);
glfwSetWindowTitle(window, title.c_str());
frame_count = 0;
last_fps_update = current_time;
}
// Input (e.g., close window on ESC)
processInput(window);
glClearColor(0.0f, 0.0f, 0.0f, 1.0f); // Clear screen
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear Z-Buffer
view = camera.getView();
shader.use();
// Generate chunks around the player
glm::ivec3 camera_chunk = glm::ivec3(
std::floor(player.position.x / CHUNK_SIZE),
std::floor(player.position.y / CHUNK_SIZE),
std::floor(player.position.z / CHUNK_SIZE)
);
// Create frustum for culling from view-projection matrix
glm::mat4 viewProj = projection * view;
Frustum frustum = camera.createFrustumFromMatrix(viewProj);
// ---- PASS 1: Draw solid grey cubes ----
glEnable(GL_POLYGON_OFFSET_FILL);
glPolygonOffset(1.0, 1.0); // Push solid faces "back"
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
shader.setVec3("u_Color", glm::vec3(0.5, 0.5, 0.5));
for (int y = -2; y < 2; y++) { // Reduced from -VIEW_DISTANCE to VIEW_DISTANCE
for (int z = -VIEW_DISTANCE; z < VIEW_DISTANCE; z++) {
for (int x = -VIEW_DISTANCE; x < VIEW_DISTANCE; x++) {
glm::ivec3 chunk_offset = glm::ivec3(x, y, z);
glm::ivec3 chunk_pos = camera_chunk + chunk_offset;
// Create AABB for this chunk
glm::vec3 chunkWorldPos = glm::vec3(chunk_pos * CHUNK_SIZE);
AABB chunkAABB;
chunkAABB.min = chunkWorldPos;
chunkAABB.max = chunkWorldPos + glm::vec3(CHUNK_SIZE);
// Frustum culling - skip if chunk is not visible
if (!frustum.isAABBVisible(chunkAABB)) {
continue;
}
glm::mat4 model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(chunk_pos * CHUNK_SIZE));
glm::mat4 mvp = projection * view * model;
shader.setMat4("u_mvp", mvp);
Chunk* chunk = world.get_or_create_chunk(chunk_pos);
Mesh* chunk_mesh = chunk->getMesh();
if (chunk_mesh)
chunk_mesh->draw();
}
}
}
// if (!debug_printed) {
// debug_printed = true;
// }
glDisable(GL_POLYGON_OFFSET_FILL);
// ---- PASS 2: Draw wireframe on top ----
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); // Just the lines
shader.setVec3("u_Color", glm::vec3(1.0, 1.0, 1.0));
for (int y = -2; y < 2; y++) { // Reduced from -VIEW_DISTANCE to VIEW_DISTANCE
for (int z = -VIEW_DISTANCE; z < VIEW_DISTANCE; z++) {
for (int x = -VIEW_DISTANCE; x < VIEW_DISTANCE; x++) {
glm::ivec3 chunk_offset = glm::ivec3(x, y, z);
glm::ivec3 chunk_pos = camera_chunk + chunk_offset;
// Create AABB for this chunk
glm::vec3 chunkWorldPos = glm::vec3(chunk_pos * CHUNK_SIZE);
AABB chunkAABB;
chunkAABB.min = chunkWorldPos;
chunkAABB.max = chunkWorldPos + glm::vec3(CHUNK_SIZE);
// Frustum culling - skip if chunk is not visible
if (!frustum.isAABBVisible(chunkAABB)) {
continue;
}
glm::mat4 model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(chunk_pos * CHUNK_SIZE));
glm::mat4 mvp = projection * view * model;
shader.setMat4("u_mvp", mvp);
Chunk* chunk = world.get_or_create_chunk(chunk_pos);
Mesh* chunk_mesh = chunk->getMesh();
if (chunk_mesh)
chunk_mesh->draw();
}
}
}
// --- Reset polygon mode for next frame (good practice) ---
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
// ---- Draw Highlighted Block ----
if (targeted_block.has_value()) {
shader.use();
glm::mat4 model = glm::mat4(1.0f);
// Voxels are centered on integer coordinates, so no need to add 0.5
model = glm::translate(model, glm::vec3(targeted_block.value()));
glm::mat4 mvp = projection * view * model;
shader.setMat4("u_mvp", mvp);
shader.setVec3("u_Color", glm::vec3(0.0f, 0.0f, 0.0f)); // Black outline
glLineWidth(2.0f);
glBindVertexArray(highlightVAO);
glDrawElements(GL_LINES, 24, GL_UNSIGNED_INT, 0); // 24 indices = 12 edges
glBindVertexArray(0);
}
// ---- Draw Crosshair ----
glDisable(GL_DEPTH_TEST); // Draw on top of everything
shader.use();
shader.setMat4("u_mvp", glm::mat4(1.0f)); // Identity matrix (NDC coordinates)
shader.setVec3("u_Color", glm::vec3(1.0f, 1.0f, 1.0f)); // White
glBindVertexArray(crosshairVAO);
glDrawArrays(GL_LINES, 0, 4); // 4 vertices = 2 lines
glBindVertexArray(0);
glEnable(GL_DEPTH_TEST);
double end_time = glfwGetTime();
float time_since_last_move = end_time - move_time;
if (time_since_last_move >= 0.017)
{
player.move(&world, time_since_last_move);
move_time = end_time;
}
// Swap buffers and poll for events
glfwSwapBuffers(window);
glfwPollEvents();
}
glfwTerminate(); // Clean up GLFW
return 0;
}