2025-09-30 12:01:44 -05:00

41 lines
1.5 KiB
Python

# Import the Llama class from the llama_cpp library
import llama_cpp
import json
tools = json.loads(open('tools.json', 'r').read())['tools']
class TextGen:
llm: llama_cpp.Llama
def __init__(self, model_path: str, n_ctx: int, n_gpu_layers: int):
# 1. Instantiate the Llama model
# Provide the path to your downloaded .gguf file
# n_ctx is the maximum context size (number of tokens) the model can handle.
# n_gpu_layers specifies how many layers to offload to the GPU. -1 means offload all possible layers.
llm = llama_cpp.Llama(
model_path="./models/mistral-7b-instruct-v0.2.Q4_K_M.gguf", # Path to your GGUF model
n_ctx=n_ctx, # Context window size
n_gpu_layers=n_gpu_layers, # Offload all layers to GPU. Set to 0 if no GPU.
verbose=False # Suppress verbose output
)
def generate(self, prompt: str) -> str:
# 3. Generate text
# The llm object is callable. Pass the prompt to it.
# max_tokens is the maximum number of tokens to generate.
# stop is a list of strings that will stop the generation when encountered.
# echo=True will include your prompt in the output.
output = self.llm(
prompt,
max_tokens=200,
echo=True
)
# 4. Print the result
# The output is a dictionary. The generated text is in 'choices'[0]['text'].
text = output['choices'][0]['text']
print(text)
return text