trying to get tooling working
This commit is contained in:
parent
4d71275f12
commit
16d4998d70
17
main.py
17
main.py
@ -1,11 +1,24 @@
|
||||
import tts
|
||||
from textgen import tool_funcs
|
||||
from textgen import llm
|
||||
|
||||
MODEL_PATH = "./textgen/models/mistral-7b-instruct-v0.3.Q4_K_M.gguf"
|
||||
|
||||
|
||||
t = tts.TTS()
|
||||
|
||||
save_path = 'audio/weather.wav'
|
||||
|
||||
t.create_audio(tool_funcs.get_high_low(), save_path)
|
||||
l = llm.TextGen(
|
||||
MODEL_PATH,
|
||||
2048,
|
||||
0
|
||||
)
|
||||
|
||||
r = l.chat_completion("What is the weather like today?")
|
||||
|
||||
print(r)
|
||||
|
||||
t.create_audio(r, save_path)
|
||||
|
||||
|
||||
|
||||
|
||||
@ -1,10 +1,11 @@
|
||||
# Import the Llama class from the llama_cpp library
|
||||
import llama_cpp
|
||||
import json
|
||||
import random
|
||||
|
||||
from . import tool_funcs
|
||||
|
||||
tools: list[dict] = json.loads(open('tools.json', 'r').read())['tools']
|
||||
tools: list[dict] = json.loads(open('./textgen/tools.json', 'r').read())['tools']
|
||||
|
||||
class TextGen:
|
||||
|
||||
@ -19,8 +20,8 @@ class TextGen:
|
||||
# Provide the path to your downloaded .gguf file
|
||||
# n_ctx is the maximum context size (number of tokens) the model can handle.
|
||||
# n_gpu_layers specifies how many layers to offload to the GPU. -1 means offload all possible layers.
|
||||
llm = llama_cpp.Llama(
|
||||
model_path="./models/mistral-7b-instruct-v0.2.Q4_K_M.gguf", # Path to your GGUF model
|
||||
self.llm = llama_cpp.Llama(
|
||||
model_path=model_path, # Path to your GGUF model
|
||||
n_ctx=n_ctx, # Context window size
|
||||
n_gpu_layers=n_gpu_layers, # Offload all layers to GPU. Set to 0 if no GPU.
|
||||
verbose=False, # Suppress verbose output
|
||||
@ -52,14 +53,18 @@ class TextGen:
|
||||
"content": user_message
|
||||
})
|
||||
|
||||
print(tools)
|
||||
|
||||
response = self.llm.create_chat_completion(
|
||||
messages=self.messages,
|
||||
tools=tools,
|
||||
tool_choice='auto'
|
||||
tool_choice='auto',
|
||||
seed=random.randint(0, 20000000000)
|
||||
)
|
||||
|
||||
tool_call = response['choices'][0]['message'].get('tool_calls')
|
||||
if not tool_call:
|
||||
# print(response['choices'][0]['message']['content'])
|
||||
return response['choices'][0]['message']['content']
|
||||
|
||||
call_info = tool_call[0]['function']
|
||||
@ -69,4 +74,15 @@ class TextGen:
|
||||
|
||||
tool_output = tool_funcs.get_high_low()
|
||||
|
||||
self.messages.append(response['choices'][0]['message'])
|
||||
self.messages.append(
|
||||
{
|
||||
"role" : "tool",
|
||||
"content": tool_output
|
||||
}
|
||||
)
|
||||
|
||||
final_response = self.llm.create_chat_completion(messages=self.messages)
|
||||
return final_response['choices'][0]['message']['content']
|
||||
|
||||
|
||||
|
||||
@ -36,10 +36,10 @@ class OpenMeteo:
|
||||
|
||||
# Process first location. Add a for-loop for multiple locations or weather models
|
||||
response = responses[0]
|
||||
print(f"Coordinates: {response.Latitude()}°N {response.Longitude()}°E")
|
||||
print(f"Elevation: {response.Elevation()} m asl")
|
||||
print(f"Timezone: {response.Timezone()}{response.TimezoneAbbreviation()}")
|
||||
print(f"Timezone difference to GMT+0: {response.UtcOffsetSeconds()}s")
|
||||
# print(f"Coordinates: {response.Latitude()}°N {response.Longitude()}°E")
|
||||
# print(f"Elevation: {response.Elevation()} m asl")
|
||||
# print(f"Timezone: {response.Timezone()}{response.TimezoneAbbreviation()}")
|
||||
# print(f"Timezone difference to GMT+0: {response.UtcOffsetSeconds()}s")
|
||||
|
||||
# Process hourly data. The order of variables needs to be the same as requested.
|
||||
hourly = response.Hourly()
|
||||
@ -57,7 +57,7 @@ class OpenMeteo:
|
||||
hourly_data['rain'] = hourly_rain
|
||||
|
||||
hourly_dataframe = pd.DataFrame(data = hourly_data)
|
||||
print("\nHourly data\n", hourly_dataframe)
|
||||
# print("\nHourly data\n", hourly_dataframe)
|
||||
|
||||
return hourly_dataframe
|
||||
|
||||
|
||||
2
tts.py
2
tts.py
@ -14,7 +14,7 @@ class TTS:
|
||||
def create_audio(self, text: str, save_path: str) -> None:
|
||||
generator = self.pipeline(text, voice='af_heart')
|
||||
for i, (gs, ps, audio) in enumerate(generator):
|
||||
print(i, gs, ps)
|
||||
# print(i, gs, ps)
|
||||
display(Audio(data=audio, rate=24000, autoplay=i==0))
|
||||
sf.write(save_path, audio, 24000)
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user