88 lines
3.5 KiB
Python
88 lines
3.5 KiB
Python
import pandas as pd
|
|
from sklearn.preprocessing import OneHotEncoder
|
|
from sklearn.neural_network import MLPClassifier
|
|
from sklearn.metrics import accuracy_score
|
|
from typing import Tuple, List
|
|
import numpy as np
|
|
|
|
def process_data_part2(train_path: str, test_path: str) -> Tuple[pd.DataFrame, pd.Series, pd.DataFrame, pd.Series]:
|
|
"""
|
|
Processes the adult dataset for part 2 requirements.
|
|
- Removes unknown values.
|
|
- Binarizes numerical attributes based on the mean.
|
|
- One-hot encodes categorical attributes.
|
|
"""
|
|
columns: List[str] = [
|
|
'age', 'workclass', 'fnlwgt', 'education', 'education-num', 'marital-status',
|
|
'occupation', 'relationship', 'race', 'sex', 'capital-gain', 'capital-loss',
|
|
'hours-per-week', 'native-country', 'income'
|
|
]
|
|
|
|
df_train: pd.DataFrame = pd.read_csv(train_path, header=None, names=columns, sep=r',\s*', engine='python', na_values='?')
|
|
df_test: pd.DataFrame = pd.read_csv(test_path, header=None, names=columns, sep=r',\s*', engine='python', na_values='?', skiprows=1)
|
|
|
|
df_train.dropna(inplace=True)
|
|
df_test.dropna(inplace=True)
|
|
|
|
X_train_raw = df_train.drop('income', axis=1)
|
|
y_train = df_train['income'].str.replace('.', '', regex=False)
|
|
X_test_raw = df_test.drop('income', axis=1)
|
|
y_test = df_test['income'].str.replace('.', '', regex=False)
|
|
|
|
numerical_cols = X_train_raw.select_dtypes(include=np.number).columns.tolist()
|
|
categorical_cols = X_train_raw.select_dtypes(exclude=np.number).columns.tolist()
|
|
|
|
X_train_numerical_processed = pd.DataFrame()
|
|
X_test_numerical_processed = pd.DataFrame()
|
|
|
|
for col in numerical_cols:
|
|
mean_val = X_train_raw[col].mean()
|
|
X_train_numerical_processed[col] = (X_train_raw[col] > mean_val).astype(int)
|
|
X_test_numerical_processed[col] = (X_test_raw[col] > mean_val).astype(int)
|
|
|
|
encoder = OneHotEncoder(handle_unknown='ignore', sparse_output=False)
|
|
|
|
X_train_categorical_processed = pd.DataFrame(
|
|
encoder.fit_transform(X_train_raw[categorical_cols]),
|
|
columns=encoder.get_feature_names_out(categorical_cols),
|
|
index=X_train_raw.index
|
|
)
|
|
X_test_categorical_processed = pd.DataFrame(
|
|
encoder.transform(X_test_raw[categorical_cols]),
|
|
columns=encoder.get_feature_names_out(categorical_cols),
|
|
index=X_test_raw.index
|
|
)
|
|
|
|
X_train_processed = pd.concat([X_train_numerical_processed, X_train_categorical_processed], axis=1)
|
|
X_test_processed = pd.concat([X_test_numerical_processed, X_test_categorical_processed], axis=1)
|
|
|
|
y_train = y_train.loc[X_train_processed.index]
|
|
y_test = y_test.loc[X_test_processed.index]
|
|
|
|
return X_train_processed, y_train, X_test_processed, y_test
|
|
|
|
if __name__ == '__main__':
|
|
train_file = 'adult/adult.data'
|
|
test_file = 'adult/adult.test'
|
|
|
|
X_train, y_train, X_test, y_test = process_data_part2(train_file, test_file)
|
|
|
|
print("Data processing complete.")
|
|
print(f"Training data shape: {X_train.shape}")
|
|
print(f"Test data shape: {X_test.shape}\n")
|
|
|
|
print("--- Neural Network (MLP) Classifier ---")
|
|
|
|
nn_classifier = MLPClassifier(hidden_layer_sizes=(100,), max_iter=500, random_state=42)
|
|
|
|
print("Training the Neural Network classifier...")
|
|
nn_classifier.fit(X_train, y_train)
|
|
|
|
print("Making predictions on the test data...")
|
|
y_pred = nn_classifier.predict(X_test)
|
|
|
|
# Calculate and report the accuracy
|
|
accuracy = accuracy_score(y_test, y_pred)
|
|
|
|
print(f"\nNeural Network Classifier Accuracy on Test Data: {accuracy:.4f}")
|