import pandas as pd from sklearn.preprocessing import OneHotEncoder from sklearn.cluster import KMeans from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score from typing import Tuple, List import numpy as np def process_data_part2(train_path: str, test_path: str) -> Tuple[pd.DataFrame, pd.Series, pd.DataFrame, pd.Series]: """ Processes the adult dataset for part 2 requirements. - Removes unknown values. - Binarizes numerical attributes based on the mean. - One-hot encodes categorical attributes. """ columns: List[str] = [ 'age', 'workclass', 'fnlwgt', 'education', 'education-num', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'capital-gain', 'capital-loss', 'hours-per-week', 'native-country', 'income' ] # Load datasets df_train: pd.DataFrame = pd.read_csv(train_path, header=None, names=columns, sep=r',\s*', engine='python', na_values='?') df_test: pd.DataFrame = pd.read_csv(test_path, header=None, names=columns, sep=r',\s*', engine='python', na_values='?', skiprows=1) # Remove rows with any missing values df_train.dropna(inplace=True) df_test.dropna(inplace=True) # Separate features and target, and clean target labels X_train_raw = df_train.drop('income', axis=1) y_train = df_train['income'].str.replace('.', '', regex=False) X_test_raw = df_test.drop('income', axis=1) y_test = df_test['income'].str.replace('.', '', regex=False) # Identify numerical and categorical attributes numerical_cols = X_train_raw.select_dtypes(include=np.number).columns.tolist() categorical_cols = X_train_raw.select_dtypes(exclude=np.number).columns.tolist() # --- Preprocessing --- # 1. Binarize numerical attributes X_train_numerical_processed = pd.DataFrame() X_test_numerical_processed = pd.DataFrame() for col in numerical_cols: mean_val = X_train_raw[col].mean() X_train_numerical_processed[col] = (X_train_raw[col] > mean_val).astype(int) X_test_numerical_processed[col] = (X_test_raw[col] > mean_val).astype(int) # 2. One-hot encode categorical attributes encoder = OneHotEncoder(handle_unknown='ignore', sparse_output=False) X_train_categorical_processed = pd.DataFrame( encoder.fit_transform(X_train_raw[categorical_cols]), columns=encoder.get_feature_names_out(categorical_cols) ) X_test_categorical_processed = pd.DataFrame( encoder.transform(X_test_raw[categorical_cols]), columns=encoder.get_feature_names_out(categorical_cols) ) # Reset index to ensure concatenation works correctly X_train_numerical_processed.index = X_train_categorical_processed.index X_test_numerical_processed.index = X_test_categorical_processed.index y_train.index = X_train_categorical_processed.index y_test.index = X_test_categorical_processed.index # 3. Combine processed features X_train_processed = pd.concat([X_train_numerical_processed, X_train_categorical_processed], axis=1) X_test_processed = pd.concat([X_test_numerical_processed, X_test_categorical_processed], axis=1) return X_train_processed, y_train, X_test_processed, y_test def run_kmeans_clustering(X_train: pd.DataFrame, k_values: List[int]): """ Runs K-Means clustering for different k values and reports centroids. """ print("--- K-Means Clustering ---") for k in k_values: print(f"\nRunning K-Means with k={k}...") kmeans = KMeans(n_clusters=k, random_state=42, n_init=10) kmeans.fit(X_train) print(f"Centroids for k={k}:") # Printing only the first 5 dimensions for brevity print(pd.DataFrame(kmeans.cluster_centers_[:, :5], columns=X_train.columns[:5])) print("-" * 20) def run_knn_classification(X_train: pd.DataFrame, y_train: pd.Series, X_test: pd.DataFrame, y_test: pd.Series, k_values: List[int]): """ Runs kNN classification on the last 10 test samples and reports accuracy. """ print("\n--- k-Nearest Neighbors (kNN) Classification ---") # Use the last 10 records from the test set X_test_sample = X_test.tail(10) y_test_sample = y_test.tail(10) print(f"Predicting for the last {len(X_test_sample)} records of the test set.\n") for k in k_values: knn = KNeighborsClassifier(n_neighbors=k) knn.fit(X_train, y_train) y_pred_sample = knn.predict(X_test_sample) accuracy = accuracy_score(y_test_sample, y_pred_sample) print(f"kNN with k={k}:") print(f" Prediction Accuracy: {accuracy:.2f}") print(f" Predicted Labels: {y_pred_sample}") print(f" Actual Labels: {y_test_sample.values}") print("-" * 20) if __name__ == '__main__': train_file = 'adult/adult.data' test_file = 'adult/adult.test' # Process data according to Part 2 requirements X_train, y_train, X_test, y_test = process_data_part2(train_file, test_file) print("Data processing complete.") print(f"Training data shape: {X_train.shape}") print(f"Test data shape: {X_test.shape}\n") # Run K-Means Clustering kmeans_k_values = [3, 5, 10] run_kmeans_clustering(X_train, kmeans_k_values) # Run kNN Classification knn_k_values = [3, 5, 10] run_knn_classification(X_train, y_train, X_test, y_test, knn_k_values)